Class 11 & 12 Mathematics formulas | GSEB SCIENCE HUB

 Class 11 & 12 Mathematics formulas





1. (α+в)²= α²+2αв+в²

2. (α+в)²= (α-в)²+4αв

3. (α-в)²= α²-2αв+в²

4. (α-в)²= (α+в)²-4αв

5. α² + в²= (α+в)² - 2αв.

6. α² + в²= (α-в)² + 2αв.

7. α²-в² =(α + в)(α - в)

8. 2(α² + в²) = (α+ в)² + (α - в)²

9. 4αв = (α + в)² -(α-в)²

10. αв =1. (α + в + ¢)² = α² + в² + ¢² + 2(αв + в¢ + ¢α)

12. (α + в)³ = α³ + 3α²в + 3αв² + в³

13. (α + в)³ = α³ + в³ + 3αв(α + в)

14. (α-в)³=α³-3α²в+3αв²-в³

15. α³ + в³ = (α + в) (α² -αв + в²)

16. α³ + в³ = (α+ в)³ -3αв(α+ в)

17. α³ -в³ = (α -в) (α² + αв + в²)

18. α³ -в³ = (α-в)³ + 3αв(α-в)

ѕιη0° =0

ѕιη30° = 1/2

ѕιη45° = 1/√2

ѕιη60° = √3/2

ѕιη90° = 1

¢σѕ ιѕ σρρσѕιтє σƒ ѕιη

тαη0° = 0

тαη30° = 1/√3

тαη45° = 1

тαη60° = √3

тαη90° = ∞

¢σт ιѕ σρρσѕιтє σƒ тαη

ѕє¢0° = 1

ѕє¢30° = 2/√3

ѕє¢45° = √2

ѕє¢60° = 2

ѕє¢90° = ∞

¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢

2ѕιηα¢σѕв=ѕιη(α+в)+ѕιη(α-в)

2¢σѕαѕιηв=ѕιη(α+в)-ѕιη(α-в)

2¢σѕα¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)

2ѕιηαѕιηв=¢σѕ(α-в)-¢σѕ(α+в)

ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.

» ¢σѕ(α+в)=¢σѕα ¢σѕв - ѕιηα ѕιηв.

» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.

» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.

» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)

» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)

» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)

» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)

» ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.

» ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв.

» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.

» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.

» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)

» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)

» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)

» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)

α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я

» α = в ¢σѕ¢ + ¢ ¢σѕв

» в = α ¢σѕ¢ + ¢ ¢σѕα

» ¢ = α ¢σѕв + в ¢σѕα

» ¢σѕα = (в² + ¢²− α²) / 2в¢

» ¢σѕв = (¢² + α²− в²) / 2¢α

» ¢σѕ¢ = (α² + в²− ¢²) / 2¢α

» Δ = αв¢/4я

» ѕιηΘ = 0 тнєη,Θ = ηΠ

» ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2

» ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2

» ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα


1. ѕιη2α = 2ѕιηα¢σѕα

2. ¢σѕ2α = ¢σѕ²α − ѕιη²α

3. ¢σѕ2α = 2¢σѕ²α − 1

4. ¢σѕ2α = 1 − ѕιη²α

5. 2ѕιη²α = 1 − ¢σѕ2α

6. 1 + ѕιη2α = (ѕιηα + ¢σѕα)²

7. 1 − ѕιη2α = (ѕιηα − ¢σѕα)²

8. тαη2α = 2тαηα / (1 − тαη²α)

9. ѕιη2α = 2тαηα / (1 + тαη²α)

10. ¢σѕ2α = (1 − тαη²α) / (1 + тαη²α)

11. 4ѕιη³α = 3ѕιηα − ѕιη3α

12. 4¢σѕ³α = 3¢σѕα + ¢σѕ3α


» ѕιη²Θ+¢σѕ²Θ=1

» ѕє¢²Θ-тαη²Θ=1

» ¢σѕє¢²Θ-¢σт²Θ=1

» ѕιηΘ=1/¢σѕє¢Θ

» ¢σѕє¢Θ=1/ѕιηΘ

» ¢σѕΘ=1/ѕє¢Θ

» ѕє¢Θ=1/¢σѕΘ

» тαηΘ=1/¢σтΘ

» ¢σтΘ=1/тαηΘ

» тαηΘ=ѕιηΘ/¢σѕΘ


1. Formulas related to force:

F = ma

F = kx

F = m(vf² - vi²/2S)

F = mv/t

F = md/t²

F = m(vf - vi) /t

F = Area × density × velocity²

F = 1/2 mv²/d

F = 1/2 Pv/d

F = Power/velocity

Fc = mv²/r

Fc = mrw²

Fc/2 = mv²/2r

Fc = 2K.E/r

F = Area × Stress

F = pir² × stress

F = YA × Strain

F = YAl/L

F = pressure × area

F = change in momentum × time interval

F = - 2mVx × Vx/2l

F2 = F1/A1 × A2

F = qE

F = kQ/r²

F = ILB sintheta

F = q (v × B) 

F = qE + q(v × B)


2. Formulas related to energy and work

Fd = k.e

mgh = 1/2 mv²

E = 1/2 kx²

E = Ve

E = nhf

E = nhc/lambda

E = Pc

K.e = hf - work function = hf - hf° = hf - hc/w° (here w° is cutt off wavelength) 

E = 1/2 Pv

mv²/2r= Fc/2

K.E/r = Fc/2

K.E = Fc×r/2

K.e = 1.5 KT

E = VQ

E = Power × time

E = Fvt

% loss in K.e = v1² - v2²/v1² × 100

% loss in P.e = h1² - h²/h1² × 100

Energy lost due to air friction(Fh) = 1/2mv² - mgh (when body is thrown upward) 

Energy lost due to air friction(FS) = mgh - 1/2mv² (when body is thrown downward) 

E = 1/2 CV² (capacitor) 

E = R × hc (R is Rydberg' constant) 

J = m-¹ × Js ms-¹

hf kalpha x rays = EL - Ek

hf kbeta x rays = EM - Ek

Binding energy = mass defect × c²

W = Fd Costheta

W = nmgh (when person is climbing stairs) 

W = n(m+m) gh (when person is climbing stairs with some load)

W = 0mgh + 1mgh + 2mgh + 3mgh ....... (in case of stacking bricks. For ist brick h=0. For 2nd brick h=1. For 3rd brick h=2 and so on)

W = Fd = PA × change in V

W = Q - change in U

Q = mc × change in T

T/273.16 = Q/Q3 (Thermodynamic scale) 

W = I²Rt

W = emf×charge

W = VQ

W = 1/2 lF

W = YAl²/2L

W = StressAl²/2Strain 

W = PressureAl²/2Strain

W = Fl²/2Strain


3. Formulas related to Power

P = Fv

P = E/t

P = n(mgh/t) 

P = Fd/t

P = mv²/2t


4. Formulas related to distance, displacement, velocity and accelration

d = vt

d = at²

d = (vf + vi/2) ×t

d = 5t² (for distance in 'n' seconds) 

d = 5(2tn - 1) (for distance in 'nth' second) 

d = 1/2 mv²/F

d = vit + 5t²

d = v × underroot 2H/g

d = vt = x°wt = x°2pi/T × t = x°2pift

x = x° Sin wt

x = x° Sin (underroot k/m) t

vf = vi + at

2as = vf² - vi²

2as = (vi + at)² - vi²

2as = vf² - (vf - at) ²

v = underroot Vfx² + Vfy² 

v = Power/Force

v = 2×K.E/momentum (k.e = 1/2 Pv) 

v² = 2×Power×time/mass (P = mv²/2t)

v = underroot 2as

v = underroot gr (speed at highest point in a verticle circle)

v = underroot 5gr (speed at lowest point in a verticle circle) 

v² = 2FS/m

v² = 2E/m

v² = 2Ve/m

v = eBr/m (velocity of particle under action of magnetic force along circular path) 

v² = Force/Area.Density

v = w underroot x°² - x²

v = underroot k/m × underroot x°² - x²

v = x°w (at mean position where x=0)

v = x° underoot k/m

v = v° underroot 1 - x²/x°² (for determining ratio b/w inst. Velocity and maxi. Velocity) 

v= x°2pif = x°2pi/T

a = x°w² = x°w.w = vw = v.2pif

Common velocity = m1v1/m1+m2

vi² = Rg/Sin2theta

v = underoot Tension×length/mass

V = 2pi ke²/nh (speed of e- in nth orbit) 

Vn = V/n

v = nh/2pimr (lambda = 2pir and lambda=h/p) 

ma = kx

a = kx/m (SHM) 

a = - gx/l (Simple pendulum) 

ac = v²/r


5. Formulas related to wavelength 'w' 

w = v/f

w = 1/wave number

w1 = 2l (when pipe is opened at both ends) 

w1 = 4l (when pipe is opened at one end) 

Delta w = Us/f (doppler shift) 

Wavelength for obs. = w - delta w = v/f - Us/f 

w = hc/Ve

w = hc/E

w = h/mv

w = h/P as P = underroot 2mE so

w = h/underroot 2mE (de Broglie wavelength) 

w = underroot 150/V A° (short method for de Broglie wavelength. This formula is applicable only for e-) 

1/w = RH (1/p²-1/n²)

Wmaxi/Wmini = n²/n²-p² (for determining ratio b/w maxi. Wavelength to mini. Wavelength for series of atomic spectrum) 

w = 2pir/n (n is no. of loops in a circle)

h/mv = 2pir


This signifies, height of liquid risen (or depressed) in a capillary tube varies inversely as the radius of tube. Smaller the diameter of capillary tube, greater is the rise of liquid in it.


Tube of insufficient length:-

Rh = 2T/ρg


As, T, ρ and g are all constant, Rh = Constant


Smaller the value of h, greater will be the value of R. But liquid will never flow.


Effect of temperature affecting surface tension of liquids:-


Surface tension of a liquid decreases with an increase in its temperature.


Tθ = K (θc-θ)


Here Tθ is the surface tension at a particular temperature θ while θc is the critical temperature of the liquid and K is constant.


Effect of density:- Density of liquid also affects its surface tension. Surface tension of a liquid is given by,


T = A (ρ - ρ')n


Here, ρ is the density of liquid, ρ' is the density of saturated vapors of liquid and A is the constant depending on the nature of liquid.


Pressure difference across a liquid surface:-


(a) Plane surface:- There is no difference of pressure on the two sides of the film.


(b) Convex surface:-Pressure below the surface film must be greater than that just above it.


(c) Concave surface:- Pressure on the upper side is greater than that just below it.


General formula for excess pressure:-


Pexcess =T[1/R1 + 1/R2]


Excess pressure in liquid drop:-


Pexcess = 2T/R, Here R is the radius of liquid drop.


Excess pressure for an air bubble in liquid drop:-


Pexcess = 2T/R


Excess Pressure for an Air Bubble in Liquid Drop


Excess pressure in soap bubble:-


Pexcess = 4T/R, Here R is the radius of soap bubble.


Pressure inside an air bubble at a depth h in a liquid:- Pin = Patm+ hdg + (2T/R)


Forces between two plates with thin water film separating them:-


(a) ΔP = T (1/r – 1/R)


(b) F = AT (1/r – 1/R)


(c) If separation between plate is d, then ΔP = 2T/d and F = 2AT/d


Radius of curvature of common film:- Rcomon = rR/R-r


Capillary depression, h = 2T cos (π-θ)/rdg


Shape of liquid surface:-


(a) Plane surface (as for water – silver) if Fadhesive > Fcohesive/√2


(b) Concave surface (as for water – glass) if Fadhesive > Fcohesive/√2


(c) Convex surface (as for mercury-glass) if Fadhesive < Fcohesive/√2


Increase in temperature:-


Δθ = 3T/ρs (1/r – 1/R) or Δθ = 3T/ρsJ (1/r – 1/R)



Post a Comment

Previous Post Next Post